Hopf monoids from class functionson unitriangular matrices

نویسندگان

  • Marcelo Aguiar
  • Nantel Bergeron
  • Nathaniel Thiem
چکیده

We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyal’s category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function spaces, in the sense of Diaconis and Isaacs. Superclasses of unitriangular matrices admit a simple description from which we deduce a combinatorial model for the Hopf monoid of superclass functions, in terms of the Hadamard product of the Hopf monoids of linear orders and of set partitions. This implies a recent result relating the Hopf algebra of superclass functions on unitriangular matrices to symmetric functions in noncommuting variables. We determine the algebraic structure of the Hopf monoid: it is a free monoid in species, with the canonical Hopf structure. As an application, we derive certain estimates on the number of conjugacy classes of unitriangular matrices. Introduction A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to that of a Hopf algebra. Combinatorial structures which compose and decompose give rise to Hopf monoids. These objects are the subject of [4, Part II]. The few basic notions and examples needed for our purposes are reviewed in Section 1, including the Hopf monoids of linear orders, set partitions, and simple graphs, and the Hadamard product of Hopf monoids. The main goal of this paper is to construct a Hopf monoid out of the groups of unitriangular matrices with entries in a finite field, and to do this in a transparent manner. The structure exists on the collection of function spaces on these groups, and also on the collections of class function and superclass function spaces. It is induced by two simple operations on this collection of groups: the passage from a matrix to its principal minors gives rise to the product, and direct sum of matrices gives rise to the coproduct. Class functions are defined for arbitrary groups. An abstract notion and theory of superclass functions (and supercharacters) for arbitrary groups exists [12]. While a given group may admit several such theories, there is a canonical choice of superclasses for a special class of groups known as algebra groups. These notions are briefly discussed Date: October 16, 2012. 2010 Mathematics Subject Classification. 05E05; 05E10; 05E15; 16T05; 16T30; 18D35; 20C33.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentations of the Schützenberger product of n groups

In this paper, we first consider n × n upper-triangular matrices with entries in a given semiring k. Matrices of this form with invertible diagonal entries form a monoid Bn(k). We show that Bn(k) splits as a semidirect product of the monoid of unitriangular matrices Un(k) by the group of diagonal matrices. When the semiring is a field, Bn(k) is actually a group and we recover a well-known resul...

متن کامل

Duality for Convex Monoids

Every C*-algebra gives rise to an effect module and a convex space of states, which are connected via Kadison duality. We explore this duality in several examples, where the C*-algebra is equipped with the structure of a finite-dimensional Hopf algebra. When the Hopf algebra is the function algebra or group algebra of a finite group, the resulting state spaces form convex monoids. We will prove...

متن کامل

Weak Hopf Algebras and Singular Solutions of Quantum Yang-baxter Equation

We investigate a generalization of Hopf algebra slq (2) by weakening the invertibility of the generator K, i.e. exchanging its invertibility KK = 1 to the regularity KKK = K. This leads to a weak Hopf algebra wslq (2) and a J-weak Hopf algebra vslq (2) which are studied in detail. It is shown that the monoids of group-like elements of wslq (2) and vslq (2) are regular monoids, which supports th...

متن کامل

Weak Hopf Monoids in Braided Monoidal Categories

We develop the theory of weak bimonoids in braided monoidal categories and show them to be quantum categories in a certain sense. Weak Hopf monoids are shown to be quantum groupoids. Each separable Frobenius monoid R leads to a weak Hopf monoid R ⊗ R.

متن کامل

The Width of Verbal Subgroups in the Group of Unitriangular Matrices over a Field

Let K be a field and let UTn(K) and Tn(K) denote the groups of all unitriangular and triangular matrices over field K, respectively. In the paper, the lattices of verbal subgroups of these groups are characterized. Consequently the equalities between certain verbal subgroups and their verbal width are determined. The considerations bring a series of verbal subgroups with exactly known finite wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012